Performance Metrics in Machine Learning
Performance metrics are crucial in evaluating machine learning models as they quantify how well models perform on given tasks. Every machine learning task can be categorized as either regression or classification, and the performance metrics for each category are designed to handle the specific nature of the problem. This post will serve as a handbook to help you remember these metrics easily. Let’s delve into popular metrics for both regression and classification, their key characteristics, and how they are implemented.
Regression Metrics
Regression models predict continuous output, requiring metrics that evaluate the distance between predicted and actual values.
- Mean Squared Error (MSE)
- Formula: \(\text{MSE} = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2\)
- $ y_j $: Actual value (ground truth) of the j-th data point.
- $ \hat{y}_j $: Predicted value from the regression model for the j-th data point.
- $ N $: Total number of data points.
- Key Characteristics:
- Penalizes larger errors more due to the squaring of differences.
- Sensitive to outliers.
- Implementation:
1 2
mse = (y - y_hat) ** 2 print(f"MSE: {mse.mean():0.2f} (+/- {mse.std():0.2f})")
- Formula: \(\text{MSE} = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2\)
- Mean Absolute Error (MAE)
- Formula: \(\text{MAE} = \frac{1}{N} \sum_{j=1}^{N} \| y_j - \hat{y}_j \|\)
- $ y_j $: Actual value (ground truth) of the j-th data point.
- $ \hat{y}_j $: Predicted value from the regression model for the j-th data point.
- $ N $: Total number of data points.
- Key Characteristics:
- Measures average magnitude of errors.
- Less sensitive to outliers compared to MSE.
- Implementation:
1 2
mae = np.abs(y - y_hat) print(f"MAE: {mae.mean():0.2f} (+/- {mae.std():0.2f})")
- Formula: \(\text{MAE} = \frac{1}{N} \sum_{j=1}^{N} \| y_j - \hat{y}_j \|\)
- Root Mean Squared Error (RMSE)
- Formula: \(\text{RMSE} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2}\)
- $ y_j $: Actual value (ground truth) of the j-th data point.
- $ \hat{y}_j $: Predicted value from the regression model for the j-th data point.
- $ N $: Total number of data points.
- Key Characteristics:
- Retains the same units as the original values.
- Provides a general idea of the error magnitude.
- Implementation:
1 2 3
mse = (y - y_hat) ** 2 rmse = np.sqrt(mse.mean()) print(f"RMSE: {rmse:0.2f}")
- Formula: \(\text{RMSE} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2}\)
- R² (R-Squared)
- Formula: \(R^2 = 1 - \frac{\sum (y_j - \hat{y}_j)^2}{\sum (y_j - \bar{y})^2}\)
- $ y_j $: Actual value (ground truth) of the j-th data point.
- $ \hat{y}_j $: Predicted value from the regression model for the j-th data point.
- $ \bar{y} $: Mean of the actual values.
- $ N $: Total number of data points.
- Key Characteristics:
- Represents the proportion of variance explained by the model.
- Values range from 0 to 1, with higher values indicating better fit.
- Implementation:
1 2 3 4
SE_line = sum((y - y_hat) ** 2) SE_mean = sum((y - y.mean()) ** 2) r2 = 1 - (SE_line / SE_mean) print(f"R^2: {r2 * 100:0.2f}%")
- Formula: \(R^2 = 1 - \frac{\sum (y_j - \hat{y}_j)^2}{\sum (y_j - \bar{y})^2}\)
Classification Metrics
Classification models predict discrete output, necessitating metrics that evaluate how well predicted classes match actual classes.
- Accuracy
- Formula: \(\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}\)
- TP: True Positives (correctly predicted positive instances).
- TN: True Negatives (correctly predicted negative instances).
- FP: False Positives (incorrectly predicted positive instances).
- FN: False Negatives (incorrectly predicted negative instances).
- Key Characteristics:
- Simple and intuitive measure.
- Can be misleading with imbalanced datasets.
- Implementation:
1 2
from sklearn.metrics import accuracy_score print(f'Accuracy Score: {accuracy_score(y_test, y_hat)}')
- Formula: \(\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}\)
- Confusion Matrix
- Components: True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN)
- Implementation:
1 2
from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_hat))
- Precision
- Formula: \(\text{Precision} = \frac{TP}{TP + FP}\)
- TP: True Positives.
- FP: False Positives.
- Key Characteristics:
- Focuses on the accuracy of positive predictions.
- Important when the cost of false positives is high.
- Implementation:
1 2
from sklearn.metrics import precision_score print(f'Precision: {precision_score(y_test, y_hat)}')
- Formula: \(\text{Precision} = \frac{TP}{TP + FP}\)
- Recall (Sensitivity/Hit-Rate)
- Formula: \(\text{Recall} = \frac{TP}{TP + FN}\)
- TP: True Positives.
- FN: False Negatives.
- Key Characteristics:
- Measures the ability to identify positive instances.
- Important when the cost of false negatives is high.
- Implementation:
1 2
from sklearn.metrics import recall_score print(f'Recall: {recall_score(y_test, y_hat)}')
- Formula: \(\text{Recall} = \frac{TP}{TP + FN}\)
- F1-Score
- Formula: \(\text{F1-Score} = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}\)
- Precision: As defined above.
- Recall: As defined above.
- Key Characteristics:
- Harmonic mean of precision and recall.
- Provides a balance between precision and recall, useful for imbalanced datasets.
- Implementation:
1 2
from sklearn.metrics import f1_score print(f'F1 Score: {f1_score(y_test, y_hat)}')
- Formula: \(\text{F1-Score} = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}\)
- AUROC (Area Under the ROC Curve)
- Formula: $ \text{AUROC} = \int_0^1 TPR(FPR) \, d(FPR) $
- TPR (True Positive Rate): Proportion of actual positives correctly identified.
- FPR (False Positive Rate): Proportion of actual negatives incorrectly identified as positive.
- Key Characteristics:
- Measures the ability to distinguish between classes.
- Higher values indicate better performance, with 1 being perfect and 0.5 being random guessing.
- Implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
from sklearn.metrics import roc_auc_score, roc_curve import matplotlib.pyplot as plt lr_probs = clf.predict_proba(X_test)[:, 1] ns_probs = [0 for _ in range(len(y_test))] lr_auc = roc_auc_score(y_test, lr_probs) ns_auc = roc_auc_score(y_test, ns_probs) lr_fpr, lr_tpr, _ = roc_curve(y_test, lr_probs) ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs) plt.plot(lr_fpr, lr_tpr, marker='.', label='Logistic') plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend() plt.show()
- Formula: $ \text{AUROC} = \int_0^1 TPR(FPR) \, d(FPR) $
Understanding these metrics helps in selecting the right evaluation technique based on the specific requirements of the machine learning task at hand.
References
[1] Aayush Bajaj, "Performance Metrics in Machine Learning [Complete Guide]". https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide (2023).
I hope this posts helps you start your learning journey effectively. Good luck!
Comments and discussions
📍Thanks for spending your time on me.